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Abstract— Just as humans can become disoriented in feature-
less deserts or thick fogs, not all environments are conducive to
the Localization Accuracy and Stability (LAS) of autonomous
robots. This paper introduces an efficient framework designed
to enhance LiDAR-based LAS through strategic trajectory
generation, known as Perception-aware Planning. Unlike vision-
based frameworks, the LiDAR-based requires different consid-
erations due to unique sensor attributes. Our approach focuses
on two main aspects: firstly, assessing the impact of LiDAR
observations on LAS. We introduce a perturbation-induced
metric to provide a comprehensive and reliable evaluation
of LiDAR observations. Secondly, we aim to improve motion
planning efficiency. By creating a Static Observation Loss Map
(SOLM) as an intermediary, we logically separate the time-
intensive evaluation and motion planning phases, significantly
boosting the planning process. In the experimental section, we
demonstrate the effectiveness of the proposed metrics across
various scenes and the feature of trajectories guided by different
metrics. Ultimately, our framework is tested in a real-world
scenario, enabling the robot to actively choose topologies and
orientations preferable for localization. The source code is
accessible at https://github.com/ZJU-FAST-Lab/LF-3PM.

I. INTRODUCTION

Accurate localization is important for autonomous robots
to perform complex tasks, especially in GPS-denied en-
vironments. Although localization algorithms [1]–[4] are
reliable in most cases, scenarios still exist where Localization
Accuracy and Stability (LAS) can get poor. One solution is
to make the robot actively choose trajectories conducive to
improving LAS, known as Perception-aware Planning.

In general, a Perception-aware Planning framework pivots
on two essential components: observation evaluation and
trajectory generation. By evaluating the accumulated loss of
observations simulated along the candidate trajectories, the
robots can choose one that is most conducive to improving
LAS. Recently, considerable progress [5]–[9] has been made
on vision-based Perception-aware Planning frameworks, yet
related research based on LiDAR remains limited. To im-
prove the LiDAR-based LAS of robots, it’s intuitive to
adapt the design principles from vision-based frameworks.
However, the essential components require significant modi-
fications due to the distinct attributes of cameras and LiDAR.

On the one hand, the focus of observation evaluation in
the framework of the two kinds is different. The main factors
that affect the vision-based LAS are texture richness [5] and
lighting conditions [10], while for the LiDAR-based LAS, it
is the geometric structure of the surroundings [11].
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Fig. 1: (a) Narrow corridor between two buildings. (b) Lush
grasslands. (c) Bird’s eye view of the entire map. (d) SOLM
of the map with the observation model given by Eq. (25),
where areas with smaller observation loss are preferable for
localization and black areas indicate obstacles.

On the other hand, the efficiency of simulating visual
feature points is much higher than that of simulating a
LiDAR scan. The visual feature points are sparse enough to
allow real-time simulation [5], even enabling the construction
of visibility functions for each feature point [12]. However,
LiDAR points are dense, making it impractical to simulate
scans during motion planning.

Therefore, we need a new metric for LiDAR-based obser-
vation loss evaluation to produce reliable guidance in trajec-
tory generation and an efficient framework that rationally
separates observation evaluation from motion planning to
prevent the time-consuming simulation from blocking the
trajectory generation process.

We note that the LiDAR-based LAS primarily depends
on the geometric structure of the environment, which is
inherently more stable than vision-based LAS due to its
invariance to lighting conditions. This stability permits the
pre-evaluation of the loss of LiDAR observation at the robot’s
potential state space like SE(2) or SE(3). In addition, since
observations are roughly the same between two similar poses,
the loss does not drastically change within a small area with
a slight orientation difference. Thus, we can discretize the
state space into grids, evaluate the observation loss once at
the center of each grid, and then use interpolation to obtain
an evaluation of the intermediate states. We name the grid
structure as Static Observation Loss Map (SOLM).

As mentioned earlier, we need to tailor a new metric to
evaluate LiDAR observation loss at each grid in SOLM.
While covariance is a widely used metric [6] to quantify
the observation loss by localization uncertainty, it does not



offer independent evaluation at one single location because
the result depends on historical observations collected in
other grids. Additionally, some metrics like pre-defining the
empirical principle [13] show insights into the localization
process. However, lacking theoretical support may diminish
the effectiveness of the metrics across diverse scenarios and
with varying LiDAR configurations.

Therefore, a theoretically well-founded metric is required
to evaluate LiDAR observation loss at a single location.
Given that Mainstream filtering-based [2] or optimization-
based [4] localization methods are essentially solving a Least
Squares Problem, our analysis starts from the same form.
Inspired by the sensitivity analysis of linear Least Squares
Problem [14], [15], we propose a metric by introducing
perturbations into LiDAR observations.

Fig. 1 shows an example of SOLM. A ground robot with a
rotating LiDAR localizes itself in the environment, as shown
in Fig. 1(c). Since the yaw angle does not affect observations
with a 360-degree LiDAR, we calculate SOLM in R2 space
to eliminate unnecessary computations. In Sec. V, a case
with a limited field of view will be presented. According
to the SOLM in Fig. 1(d), degenerate corridors (Fig. 1(a))
and unstructured grasslands (Fig. 1(b)) are identified as
less favorable for improving LAS, whereas places with rich
structured features are deemed beneficial.

During motion planning, we consider SOLM alongside
other factors, such as obstacle avoidance, trajectory smooth-
ness, and agility, to generate trajectories favorable for local-
ization. We apply the proposed framework in more scenarios
in Sec.V to validate the effectiveness. The experiments show
that benefiting from the reliable metric and well-designed
framework, the robot can improve its LAS by selecting
topologies and orientations with low observation loss.

In summary, this paper makes the following contributions:

1) We propose a novel perturbation-induced metric to
evaluate LiDAR observation loss in SOLM calculation.

2) We design an efficient LiDAR-based Perception-aware
Planning framework leveraging LiDAR attributes to
decouple observation evaluation and motion planning.

3) We conduct extensive experiments to validate the effec-
tiveness of the proposed framework. The entire project
is open-sourced to promote further research in this field.

II. RELATED WORKS

This section will discuss existing Perception-aware Plan-
ning frameworks, focusing on the design of metrics and
frameworks. We aim to highlight the advancements and
identify gaps our research seeks to address.

In the realm of metric design for LiDAR-based Perception-
aware Planning frameworks, empirical metrics [13] have
been explored to evaluate LiDAR observation loss, offering
insights into the localization process. However, these metrics
are not well theoretically supported, which may lead to
diminished effectiveness across various scenarios and dif-
ferent sensor configurations, highlighting the need for more
universally applicable metrics.

Some researchers have proposed metrics [7], [14], [16]
that evaluate observation loss at a specific location by
examining the observability of observations. These metrics
are adept at identifying degenerate scenarios, such as open
fields or tunnels. Yet, degenerate scenarios are not the sole
contributors to the diminished LAS. Factors like dynamic
objects [17], unstructured environments [18], and sensor
noise [19] interference also play significant roles.

Cognetti et al. [20] recognized it is insufficient to focus
only on observability without considering noise and use pose
estimation covariance as the metric. It works in vision-based
frameworks, but as mentioned in Sec.I, covariance is not an
ideal metric to provide independent evaluation for SOLM
calculation due to its historical observations. Without the
help of SOLM, we have to simulate the LiDAR scan for
covariance calculation during motion planning, which will
reduce the efficiency of the entire framework.

Therefore, a theoretically founded and independent metric
for evaluating LiDAR observation loss is necessary. This
paper proposes a novel metric via perturbation and sensitivity
analysis [15]. In contrast to the approach in work [14],
where perturbations are applied to additional constraints, we
directly apply perturbations to the observations and analyze
their effect on the solution. We find that the degeneracy factor
derived in work [14] is a special case of the proposed metric.

Regarding the framework for Perception-aware Planning,
we focus on how existing strategies incorporate the obser-
vation loss into motion planning. Strategy [7], [12] models
observation loss as a differentiable function concerning the
robot’s pose. This approach assumes feature points are al-
ways visible, which may not hold in complex environments.
Another strategy [6] selects the final trajectory with the
lowest covariance from several candidate trajectories that
meet both obstacle avoidance and kinematic requirements.
Strategy [5] uses covariance as a heuristic in exploring paths
with Rapid Random Trees. The above three strategies work
well in vision-based frameworks, while it is impractical for
LiDAR-based Perception-aware Planning, primarily because
vision feature points are sparse and can be simulated in real-
time, whereas LiDAR point clouds are dense and simulating
LiDAR scans is time-consuming, making trajectory genera-
tion has a long time span.

We decouple the evaluation process and motion planning
into a two-phase pipeline to ensure the efficiency of motion
planning. At first, the proposed perturbation-induced metric
is employed to calculate SOLM, which is then stored as gray-
scale images. When a new trajectory needs to be generated,
the motion planning module will use the stored SOLM in
the front- and back-end, finally optimizing a trajectory that
can balance LAS, obstacle avoidance, and agility.

III. METRIC DERIVATION

In this section, we derive a new metric to evaluate LiDAR
observation loss, facilitating SOLM computation. In Sec. III-
A, we state the problem to be solved and give the intuition
behind our method. In Sec. III-B, we present an overview



of the derivation process to outline our methodology and put
details in the appendix for better readability.

A. Problem statement and method intuition

Assume the robot’s pose is denoted by x, which has n
dimensions. Data captured at pose x by sensors can be
utilized to construct error-based observations, denoted as
h(x) = [h1(x), h2(x), ..., hm(x)]T. An example of hj(x) is
given by Eq.(25) in Sec. V, which means the distance from
point j to its nearest plane. We aim to develop a metric to
evaluate LiDAR observation loss that quantifies the effect of
a LiDAR observation h(x) on the robot LAS. The metric
can be formulated as:

q = Q(h(x)), (1)

where Q denotes the metric, and scalar q is the observation
loss. Regions with low q values are more conducive to
maintaining good LAS.

As mentioned in Sec. I, mainstream localization algo-
rithms [2], [4] are essentially solving a Least Square Prob-
lem. To derive a concrete form of Q, we explore how
observations h(x) influence robots’ LAS in the linear Least
Square Problem context. Consider the pose estimation prob-
lem as the following nonlinear Least Square Problem:

x∗ = argmin
x

1

2

m∑
j=1

∥hj(x)∥22. (2)

Usually, we solve Eq.(2) iteratively with x0, an initial
estimate of x. Suppose we iterate one step using Gauss-
Newton method [21] to obtain xopt, which is equivalent to
solving the following optimization problem:

xopt = argmin
x

1

2
∥A(x− x0)− b∥22, (3)

where A ∈ Rm×n, b ∈ Rm. Each row of A is ∇T
xhj |x=x0 ,

each row of b is −hj(x0), and optimal pose estimation xopt
is directly affected by observations h(x).

In fact, the observations usually contain sensor noise,
erroneous associations, etc., which can be regarded as a
perturbation applied to the exact observations. So we actually
solve for x̂opt under disturbed observations ĥ(x). Naturally,
we expect the displacement of the solution ∥x̂opt − xopt∥
caused by perturbations as small as possible.

According to the linear Least Square Problem sensitivity
theory [15], given a certain disturbance on observations, the
displacement of xopt depends on h(x). In other words, the
attributes of h(x) decide the robustness of the solution.
Hence, if the metric Q effectively captures the perturbation-
induced displacement of xopt, it can serve as a reliable
measurement of observation loss at the given pose x.

B. Metric derivation

If we have a smooth enough perturbation mapping Vδv

and a perturbation δv ∈ RV that change the observations h
to ĥ, where Vδv : h(x) 7→ ĥ(x, δv), xopt will be changed to
x̂opt. Note that the perturbation mapping Vδv with different

expressions will lead to different changes in xopt. In this
work, we assume that the mapping Vδv has the form of a
linear transformation with a bias, which can be expressed as
the following equations:

ĥ(x, δv) = (I + δK)h(x) + δt, (4)
δK = g(δk) ∈ Rm×m, (5)

δv = [δk, δt]T, (6)

where δt ∈ Rm,V = m2 +m. The role of g is to resize the
vector δk ∈ Rm2

to the matrix δK in row-major order [22].
Substituting ĥ(x) into Problem (3), x̂opt can be obtained by
solving the following optimization problem:

x̂opt = argmin
x

1

2
∥(I + δK)A(x− x0)

− (b− δKb− δt)∥22. (7)

Let ∆x = x− x0, we have:

xopt = argmin
∆x

1

2
∥A∆x− b∥22 + x0, (8)

x̂opt = argmin
∆x

1

2
∥(A+∆A)∆x− (b−∆b)∥22 + x0, (9)

where ∆A = g(δk)A and ∆b = g(δk)b+ δt.
What we care is how much small δk and δt can affect

the displacement norm of the solution ∥x̂opt−xopt∥. We find
that this problem can be converted to a sensitivity analysis
problem for the optimal solution of a linear Least Square
Problem. Work [15] summarizes a number of methods for
obtaining the upper bound on the variation of the solution
caused by ∆A and ∆b. Let the expression for the upper
bound be E(∥∆A∥, ∥∆b∥), we have

∥x̂opt − xopt∥ ≤ E(∥∆A∥, ∥∆b∥). (10)

Writing the perturbations δk and δt as: δk = rkα, δt = rtβ,
where αTα = βTβ = 1, rk ≥ 0, rt ≥ 0, and substituting
them into the upper bound E, we have:

E(∥∆A∥, ∥∆b∥) = E(∥g(δk)A∥, ∥g(δk)b+ δt∥)
≜ F (rkα, rtβ). (11)

Treating α,β as constants first and linearizing F near rk =
rt = 0 (which means the intensities of the perturbations tend
to zero), we have

F (rkα, rtβ) ≈
∂F

∂rk

∣∣∣∣
rk=rt=0

rk +
∂F

∂rt

∣∣∣∣
rk=rt=0

rt

≜ d1(α, β)rk + d2(α,β)rt. (12)

We note that d1 and d2 serve as an amplifier of perturbations,
which, in other words, denotes the sensitivity of F to the
perturbations. As the upper bound of the displacement of
the solution ∥x̂opt − xopt∥, we expect F less sensitive to
the perturbations, which will constrain the sensitivity of
displacement to the perturbations at a level no more than
the sensitivity of F , because the inequality sign still holds
for the derivation of both sides of Inequality (10) at zero.
This can be easily proved by considering the functions on
the left and right sides of Inequality (10) as f1 and f2 in
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(a) ∥∂F/∂δt∥22 when δt is near zero

(b) β − |qo| curve in polar coordinates

Fig. 2: A special example for illustrating the proposed metric,
where E(∥∆A∥, ∥∆b∥) =

√
δt21 + 8δt22, δt = [δt1, δt2]

T ∈
R2. Figure (a) illustrates the results of directly solving for
F on the derivative of δt, where ∥∂F/∂δt∥22 = (δt21 +
64δt22)/(δt

2
1 + 8δt22). The figure to the right is a top view

of the surface on the left. Since the derivative of F does not
exist at zero, there is a hole in the surface. Figure (b) shows
how the proposed metric looks like in the polar coordinate
system θ − r, where β = [cos θ, sin θ]T, r = |qo| =
|d2| =

√
cos θ2 + 8 sin θ2. We can clearly see the effect of

perturbations with different directions on the sensitivity of
the upper bound E from this figure.

Lemma 1, respectively. Thus, we define the metric Q as the
sensitivity of the upper bound F to the perturbations:

q =
√
w1d21(αG ,βG) + w2d22(αG ,βG), (13)

where αG ,βG are user-chosen directions of perturbations,
w1 > 0, w2 > 0, w1 + w2 = 1 are the weights of
d1, d2, respectively. Here, instead of performing sensitivity
analysis on the derivation of ∥x̂opt − xopt∥ directly, we
perform sensitivity analysis on the upper bound E because
the expanded expression for ∥x̂opt−xopt∥ is too complicated
to be analyzed. After simplifying, what we need to do is
pursue observations h(x) with lower q value to keep low
sensitivity of displacement ∥x̂opt − xopt∥ to perturbations,
which is conducive to improving the LAS.

The intuition for defining the metric as Eq.(13) is that the
directions of the perturbations can affect the sensitivity of
the upper bound E. From a mathematical point of view, it is
impossible to obtain the sensitivity of E by direct derivation
of δk and δt without treating α,β as constants first, since
the derivatives of the norms usually do not exist at zero. To
enhance the clarity of the abstract mathematical procedure,
we present an example when m = 2, w2 = 1, visualizing
∥∂F/∂δt∥22 and |qo| =

√
w1d21 + w2d22 in Fig. 2.

In this work, we choose one of the upper bounds derived
in the work [23] to compute the metric. According to the
results of the work [23], suppose that A has full column
rank and ∥∆A∥2 < σ1, where σ1 is the smallest singular
value of A, we have

E(∥∆A∥, ∥∆b∥) = ∥∆x∗∥2 + σ−1
1 ∥r∥2

σ1 − ∥∆A∥2
∥∆A∥F

+
1

σ1 − ∥∆A∥2
∥∆b∥2, (14)

where ∆x∗ = argmin
∆x

1
2∥A∆x− b∥22, r = A∆x∗ − b.

Writing α as α = [δkT
1, δk

T
2, ..., δk

T
m]T and calculating

the corresponding derivatives (Details can be found in Ap-
pendix. B), we can obtain:

q(α) =
1

σ1

√√√√w1

m∑
j=1

δkT
jΦδkj + w2, (15)

where Φ = ξ2AAT + bbT, ξ = ∥∆x∗∥2 + ∥r∥2/σ1.
Noting that Φ is a symmetric semi-positive definite matrix

and m ≥ n, we can diagonalize it: Φ = PΛP T, where
PP T = I,Λ = diag(λm, λm−1, ..., λ1), 0 = λ1 = λ2 =
... = λm−n−1 ≤ λm−n ≤ ... ≤ λm are eigenvalues of Φ.
Since αTα = 1, Eq.(15) is equivalent to:

q(α) =
1

σ1

√√√√w1

m∑
j=1

δkT
jΛδkj + w2. (16)

As illustrated in Fig. 2(b), the evaluation is af-
fected by the direction of perturbations. With eigen-
value analysis, we can obtain the range of evaluation
result:

∑m
j=1 δk

T
jΛδkj ≥

∑m
j=1 λ1δk

T
j δkj = λ1 and∑m

j=1 δk
T
jΛδkj ≤

∑m
j=1 λmδkT

j δkj = λm.
Thus, choosing different value of

∑m
j=1 δk

T
jΛδkj , we can

obtain different forms of q. The three most representative
forms are:

q(min) =
1

σ1

√
w1λ1 + w2 =

√
w2

σ1
. (17)

q(n) =
1

σ1

√
w1λm−n+1 + w2, (18)

q(max) =
1

σ1

√
w1λm + w2, (19)

Different strategies actually represent different conserva-
tiveness. q(max) is the most conservative estimate, choosing
the direction in which the perturbation has the greatest im-
pact. On the contrary, q(min) is the least conservative strategy,
which is actually the degradation factor in literature [14]. q(n)

is an intermediate strategy between q(max) and q(min), where
n denotes the dimension of the state x to be estimated. In
Sec. V, we will show the effect of strategies with different
levels of conservativeness in observation evaluation and
trajectory generation.
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Fig. 3: The proposed perception-aware planning framework. The top part represents the SOLM calculation process, while
the bottom part represents the motion planning process.

IV. FRAMEWORK DESIGN

In this section, we show the framework of the proposed
LiDAR-based Perception-aware Planning, including SOLM
calculation with the metrics derived in Sec. III, trajectory
planning based on SOLM, and the relation of these two parts.

A. SOLM Calculation

The upper part of Fig. 3 shows the process of SOLM
calculation, including initialization, updating, and saving.

To start with, we initialize the SOLM according to the
robot’s potential state space. Assume the robot’s state is x =
[x, y, θ]T ∈ SE(2). Given the resolution on each dimension,
we discretize the SE(2) state space a grid structure with the
size of a, b, and c for dimensions x, y, and θ, respectively.
The obstacles within the given point cloud map will be
marked on the SOLM, where the observation evaluation will
be skipped to reduce unnecessary calculations.

Then, we evaluate the observation loss at each grid. Firstly,
the information of a non-obstacle grid(i, j, k) is taken out
from the SOLM. Secondly, we simulate a LiDAR scan at
the state represented by the center of this grid. A ray-casting-
based scan simulator with GPU acceleration can significantly
speed up the simulation process, like the one used in
work [24]. The simulated scan will formulate observations
h(x) follow the observation model like Eq. (25). Thirdly,
we evaluate the observation loss at state x with the metric Q
derived in Sec. III. Finally, we update the evaluation result q
into grid(i, j, k). It is noted that since the evaluation process
at different grids is independent of each other, the process
can be performed in parallel. Once all the non-obstacle grids
have been evaluated, we obtain the SOLM that can be used
for motion planning. In practice, due to the similar structure
of the picture, we store the SOLM as multi-channel images
for the SE(2) case. For higher-dimensional state spaces, like
SE(3), we store the SOLM as a tensor.

B. Motion planning

The lower part of Fig. 3 shows the process of motion plan-
ning, including path searching and trajectory optimization.

After loading SOLM from stored images, we restore the
knowledge of observation loss in the robot’s state space. For
front-end path searching, we adopt the SOLM as the cost
function and perform Breadth-First-Search (BFS) in the grid
map, which allows for full consideration of all topologies
and orientations in the environment to emphasize the ef-
fectiveness in improving the robot’s LAS of the proposed
Perception-aware Planning framework.

For trajectory optimization, similar to the work [25],
we use piecewise polynomials x(t) = [x(t), y(t), θ(t)]T to
represent state trajectories, where [x, y] ∈ R2 denotes the
position of the robot in the world frame, θ ∈ SO(2) denotes
the yaw angle of the robot, as mentioned in last subsection.
In this work, the cubic spline is chosen to represent the
trajectory for the smoothness. We formulate the perception-
aware trajectory planning problem for ground robots as the
following optimization problem:

min
c,T

∫ Ts

0

q(x(t))dt+ ρTTs (20)

s.t. Mc = b, T ≥ 0, (21)
Nonholo(x) = 0, (22)

ẋ2 − ([vmlon, vmlat, wmax]
T)2 ≤ [0, 0, 0]T, (23)

SDF(x) ≥ rsafe, (24)

where c ∈ R4N×3 denote coefficient matrix, N denotes the
number of segments of the piecewise polynomials. Each
element in T = [T1, T2, ..., TN]

T ∈ RN denotes the duration
of a piece of the trajectory. In the object function, q(x(t))
denote observation loss at state x(t), Ts = T1+T2+ ...+TN
is the total duration of the trajectory, ρT is a positive weight
to ensure the aggressiveness of the trajectory.



Conditions (21) denote the continuity constraints of the cu-
bic spline at interpolation points and the positive time, where
the inequality is taken element-wise. Conditions (22) denote
the possible nonholonomic constraints of the robot. For car-
like robots or differential robots, it is ẋ sin θ − ẏ cos θ = 0.
While for omnidirectional robots, this constraint does not
exist. Conditions (23) are dynamic feasibility constraints,
where the inequality and square operation are also taken
element-wise. vmlon, vmlat, wmax denote maximum longitude
velocity, latitude velocity, and angular velocity, respectively.
Condition (24) denotes safety constraint, where SDF(·) de-
notes the signed distance function (SDF) at position [x, y]T to
the nearest obstacle. rsafe denotes the safety distance related
to the size of the robot. In this work, we compute the SDF
by the algorithm proposed in work [26].

To make the above optimization problem easier to solve,
we adopt the MINCO trajectory class and differential ho-
mogeneous mapping used in work [27] to eliminate the
constraints (21). For ease of solving the problem, we also
replace the integral in the objective function with a summa-
tion approximation. When the equation constraint (22) exists,
PHR Augmented Lagrange Multiplier method [28] (PHR-
ALM) is used to solve the simplified problem for higher
accuracy. Conversely, we utilize the penalty function method,
which is sufficient to obtain an acceptable solution. Besides,
an efficient quasi-Newton method L-BFGS [29] is chosen
as the unconstrained optimization algorithm to work with
PHR-ALM and the penalty function method.

V. EXPERIMENTS

A. Implementation details

To validate the effectiveness and efficiency, we apply
the proposed Perception-aware Planning framework on an
omnidirectional vehicle (RoboMaster AI-2020) with a 70-
degree Field of View (FoV) LiDAR (Livox Mid-701). In
real-world experiments, the odometry is provided by FAST-
LIO2 [2], a high-precision Lidar-Inertial Odometry (LIO)
system. The ground truth of robot pose is provided by the
motion tracking system (NOKOV2). All the computation is
performed on an on-board computer with Intel i7-1165G7.
The observation model takes the distance from the scan point
to the nearest plane, the same model defined in work [2]:

hj(
Lpj ,x) =

Guj
T(GRL

Lpj +
GtL − qj), (25)

where x indicates the robot position GtL and orientation GRL
to be estimated, pj is a LiDAR point, uj is the normal vector
of the nearest plane, qj is a point on the nearest plane.

To see if the metric is reliable in evaluating observation
loss, we adopt an indicator Mean Disturbance-induced Error
(MDE) serving as the evaluation ground truth, which is
similar to ep defined in work [30] as follows:

MDE =
1

N

N∑
j=1

∥ log(T−1
gt T regi,j)

∨∥22, (26)

1https://www.livoxtech.com/mid-70
2https://www.nokov.com/

where N denotes the number of disturbances, T regi,j is the
jth registration result start from a disturbed T gt with iterated
point-to-plane registration.

B. Metric Effectiveness Validation

In this subsection, we demonstrate the effectiveness and
characteristics of the proposed metrics in evaluating obser-
vation loss in several representative scenes built in UE53.

As shown in Fig. 4, scene (a) is rich in planar features
where the robot can localize itself stably and robustly to
observation perturbations. Scene (d) is a typical degenerate
scenario. Scene (c) is an unstructured scenario with roughly
the same features, where the robot’s pose estimation is
sensitive to the initial guess x0. Scene (b) shows some
structured features in the unstructured grasslands.

Fig. 4: Four representative seances: (a) Houses, (b) Single
house on the meadow, (c) Meadow, (d) Wall.

We first simulate a LiDAR scan at each scene to obtain
observations h(x) with the LiDAR model described in
Eq. (25). Then we use metrics Eq. (17)-(19) to evaluate the
loss of the simulated observation. Besides, we calculate MDE
for each scene as the evaluation’s ground truth. The result is
shown in TABLE. I. By comparing the ground truth with the
evaluations by different metrics, we can judge which metric
can provide the most reliable evaluation. It’s important to
note that we are only concerned with the relative loss of
different scenarios by the same metric.

TABLE I: observation loss in four scenes

Metric a b c d

q(min) 0.320 0.28 0.31 12.32
q(n) 0.547 0.91 1.20 12.34
q(max) 12.15 17.2 16.3 568.8
MDE 0.733 2.81 3.80 4.63

In Table. I, all of the three metrics can tell the observation
loss in scene (d) is the worst, while only the evaluation with
metric q(n) is consistent with the ground truth in the four
scenes. For q(min), which is actually the degeneracy factor
proposed in literature [14], cannot distinguish scenarios (a),
(b), and (c) well because this metric only focuses on the
structural richness of scenarios. In addition, the reason why
the evaluation with q(max) does not distinguish scenarios (b)

3https://www.ue5.com



and (c) well is the introduction of over-conservative maxi-
mum eigenvalues, which leads to the evaluation influenced
by the best-observed dimension of the state to be estimated.

C. Experiment in Large Scale Map
To demonstrate the effectiveness of the proposed frame-

work in scenarios with large ranges, we build a Gobi desert
in UE5 as shown in Fig. 5. We require the robot with the
configuration in Sec. V-A to reach a distant warehouse from
the inside of a small town. Stones are evenly distributed on
the ground outside of towns to help robots locate themselves
while traveling, and part of the stones are surrounded by
weeds and bushes. To further illustrate the characteristics
of the framework with different metrics, we show two
trajectories guided by metrics q(min) and q(n) respectively.

Fig. 5: Robot trajectories by the proposed framework.
As we can see in Fig. 5, the planner utilizing q(min)

chooses a trajectory with grass and bush, whereas the planner
utilizing q(n) prefers the path with well-structured features
and devoid of grass and bush, which is because q(min) only
considers the feature richness of observations and make the
robot pursuit area with rich features no matter whether it is
preferable for robot localization.

Fig. 6: MDE along two different trajectories.
To evaluate how much effect the observations along the

trajectories have on LAS, we calculate MDE for each pose
sampled along the trajectories at a constant time interval. As
shown in Fig. 6, while the trajectory guided by q(n) is less
rich in features compared to q(min), the clear geometrical
features result in smaller accumulated MDE (S = 43.66)
compared to the trajectory guided by q(min) (S = 64.98).

D. Real-world Experiment
After showing the different features of the proposed met-

rics, we adapt our Perception-aware Planning framework to

the real-world scenario. As shown in Fig. 7(a), a vehicle
with configurations in Sec. V-A is required to navigate from
point A to point B or C, during which process it has to
localize itself with boxes and floor within the motion capture
area. According to Sec. V-B and V-C, metric q(n) has more
holistic performance that provides reliable evaluations. Here,
we show trajectories (#2 and #4) guided by metric q(n) and
trajectories (#1 and #3) without metrics for comparison.

Fig. 7: (a) real-world scenario, (b) generated trajectories, (c)
Localization error along different trajectories.

As shown in Fig. 7(b), the vehicle guided by q(n) is able to
choose topologies and orientations with low observation loss.
We calculate the localization error of the robot when moving
along each trajectory by ∥ log(T−1

gt T odom)
∨∥2, where T gt is

given by Motion Tracking System and T odom is given by
FAST-LIO2 [2]. As we can see in Fig. 7(c), trajectories #2
and #4 have lower localization error than #1 and #3, which
demonstrates that the trajectories generated by the proposed
framework are conducive to improving LAS.

VI. CONCLUSION

In this paper, we propose a LiDAR-based Perception-
aware Planning framework and perturbation-induced met-
rics. Through experiments, we show different features of
the proposed metrics and validate the effectiveness of our
framework. At the same time, there is still space for improve-
ment in our work. Firstly, we assume that the localization
algorithm essentially addresses a least square problem. As
a result, the proposed metrics may not be suitable for all
localization algorithms, such as learning-based methods. In
addition, extensive real-world experiments across a broader
range of scenarios are necessary to explore the limits of the
proposed framework. In the future, we will conduct more
experiments to investigate the effectiveness of the framework
and evolve the current SOLM into a dynamically updated
grid structure for online replanning applications.



APPENDIX

A. Lemma for Formula (10) ∼ (13)

Lemma 1. ∀x ∈ [0,+∞), f1(x), f2(x) are continuously
differentiable, and f1(x) ≤ f2(x). If f1(0) = f2(0), we have
f ′
1(0) ≤ f ′

2(0).

Proof. Let f(x) = f2(x)− f1(x), then ∀ζ > 0,

0 ≤ f2(ζ)− f1(ζ)

ζ
=

f(ζ)− f(0)

ζ
.

Thus,

0 ≤ lim
ζ→0+

f(ζ)− f(0)

ζ
= f ′(0) = f ′

2(0)− f ′
1(0).

B. Derivations of Eq.(14)

d∥∆A∥F
drk

∣∣∣∣
rk=0

=
d
√∑m

j=1∥rkATδkj∥22
drk

∣∣∣∣∣∣
rk=0

= lim
rk→0+

√
r2k

∑m
j=1 δk

T
jAATδkj

r2k

=

√√√√ m∑
j=1

δkT
jAATδkj , (27)

∂∥∆b∥2
∂rt

∣∣∣∣
rk=rt=0

=
∂∥g(δk)b+ δt∥2

∂rt

∣∣∣∣
rk=rt=0

= lim
rt→0+

√
r2tβ

Tβ

r2t
= 1, (28)

∂∥∆b∥2
∂rk

∣∣∣∣
rk=rt=0

= lim
rk→0+

√∑m
j=1∥rkb

Tδkj∥22
r2k

=

√√√√ m∑
j=1

δkT
jbb

Tδkj , (29)
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